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Abstract

The total stress of mechanically loaded and thermally mismatched bimaterial bodies is a sum of two stress fields.
Therefore, the total Helmholtz energy consists of self-energies and interaction terms. Although the interaction strain
energy vanishes (Colonnetti’s theorem), the displacements purely caused by the mismatch are found to interact with the
loading mechanism. The physical basis for this interaction is investigated and expressions for the energy release rate of
an interfacially cracked system are derived. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With the increasing use of technical ceramics the need to bond these materials to metals also increases
and several bonding technologies exist or are being developed (Klomp and de With, 1993). Often a joint is
manufactured at elevated temperatures and the thermal expansion coefficients of the materials constituting
the joint are usually different so that thermal residual stresses develop in and near the interface between the
materials. These stresses occasionally reach values so high that the component fails during the cooling
down period following the joining process. Even if the component survives the cooling process, thermal
residual stresses may lead to a considerable weakening of the component, that is to say to a reduction of
the, externally applied, mechanical load the component can withstand. These stresses may also have the
opposite effect, i.e. toughening. Classically, the fracture load or a related quantity, for example fracture
toughness, is used to characterise the fracture of a joint. However, from the point of view of materials
science an energy based approach (Maugin, 1992; van der Varst and de With, 1998) is very attractive
because it enables one to delineate the various processes that lead to toughening or weakening of the
component. In this approach one distinguishes between mechanisms that can supply energy for crack
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growth and those that absorb energy thus decreasing the energy available for crack growth. ' These
mechanisms may be of mechanical, chemical or other nature. In this paper, however, we consider mech-
anisms associated with mechanical energy, that is to say with strain energy due to the imposed external
traction and due to thermal mismatch, with the energy associated with a loading mechanism 2 and, spe-
cifically, interaction energies.

Crack growth starts if the crack extension force or energy release rate equals the crack resistance force
(Kanninen and Popelar, 1985). The crack extension force is proportional to minus the derivative of the total
potential energy of the system to the crack length. Part of this energy is the elastic or strain energy U
present in the system and the other part is the potential energy Uy, of the loading mechanism. If mismatch
stresses are present and the system is also loaded externally, the elastic energy derives from two sources; one
being the mismatch of the thermal expansion coefficients and the other the external mechanical loading. In
addition to that interaction may occur. Indeed, even for linear systems where the superposition principle
holds stresses and strains can be superposed but for energies this is usually not possible. Generally we
therefore have for the total elastic energy Uy the splitting Uy = U + Uy, + Uy, with U, the elastic energy
caused by the external loading, Uy, the elastic energy associated with the thermal residual stresses and Uy,
the elastic interaction energy associated with the simultaneous presence of the residual and the externally
caused stress fields. With residual or internal stresses we mean stress fields that may be present in a
component that is not subjected to volume loading and without boundary conditions whatsoever, 1.e. stress
fields with vanishing divergence in the interior of a volume and zero traction on the surface. Now, ac-
cording to an old theorem of Colonnetti (Colonnetti, 1915; Kroner, 1958; Eshelby, 1956; Hirth and Lothe,
1992) the interaction energy for elastic fields due to external loading and due to internal stress is zero. °
Because residual stress caused by thermal mismatch is such a system of internal stress, Ui, is zero and one
finds Uy = U + Uy According to Eshelby (1956), a system of internal stress does, however, interact with
the loading mechanism the result being that interaction terms may be present in the other contribution
(potential energy of the loading mechanism) to the total energy. To describe such an interaction between
loading mechanism and thermal residual stresses one would expect this interaction energy to be propor-
tional to the applied loading, for example a force parameter £, and also proportional to the displacements v
caused solely by the thermal mismatch: U;, o< fv. Eshelby’s treatment (Eshelby, 1956) uses in fact these
considerations. A similar approach was used by Nairn (1997). The physical basis for such an interaction
energy is unclear. After all, load application usually occurs after joining and cooling the system meaning
that the displacements v occur without any load acting on the system. So one is left with the question why a
term proportional to fv should be included in the energy.

The questions raised above merit a more detailed study of the question how the external loading, thermal
mismatch and temperature contribute to the total potential energy, i.e. to the energy expression from which
the energy release rate is derived (Maugin, 1992).

The outline of the paper is as follows. In Section 2 the system is described. Important is that this de-
scription does not only involve shape and material properties but also its history because, prior to loading,
joints have gone through a certain thermal process and it is precisely this process which leads to thermal
residual stresses. Section 3 deals with the question whether an interaction between the loading mechanism
and the system of internal stress due to thermal mismatch does exists and the physical basis of such an
interaction. In Section 4 expressions for the energy release rate are derived and in Section 5 the most
important results will be discussed.

! One should be aware of the fact that there are mechanisms that can do both, for example phase transformations.
2 A loading mechanism is a device that applies traction and it can supply or absorb energy.
3 The original reference (Colonnetti, 1915) is quite old and not readily available. So we reproduced the theorem in Appendix A.
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We use direct notation with boldface lower case roman letters, like x, indicating vectors in three-
dimensional space and boldface roman capitals, like A, indicating second-order tensors. The term second-
order tensor is used as a synonym for linear transformations from R; into R;. However, the two boldface
greek symbols € and ¢ always denote the small strain tensor and the Cauchy stress tensor, respectively.
Symbols like L denote fourth-order tensors, where a fourth-order tensor is defined as a linear transfor-
mation on the space of all second-order tensors. A single fixed Cartesian coordinate system is used with
(unit) base vectors e, e, and e;. A single dot (-) denotes contraction over one and a double dot (:) con-
traction over two indices. So, employing the Einstein summation convention, X -y = x;)1, A -X = 4%,
A-B= AikBkja A:B= A,:,-B,-j and L: A= Lijk[Akl-

2. Thermo-mechanical model of the system
2.1. Geometry, materials and loading of the joint

Consider two bodies By and B, (boundary surfaces: 0B; and 0B,), joined along a common part I' (I'|; =
magnitude I') of 0B, and 0B, (Fig. 1). The union of the two bodies is denoted by B (B = B; U B;) and the
external surface of the joined bodies by S (S = (0B, U 3B,) \ I'). Each body is homogeneous (anisotropy is
allowed) but they differ with respect to thermal and mechanical properties. The joint operates at temper-
ature 7 and a traction system t acts on the surface part S;. No volume loading is present. The traction
system is assumed to be prescribed and self-equilibrating (total external force and external moments are
zero) and not to act on the crack faces. So, the part S, of S is traction-free and includes the crack faces. The
system as a whole is not supported in any way. This case also includes a system for which the applied
traction is not self-equilibrating provided the system is supported in a statically determinate manner.

2.2. Thermal and processing history

A joint is generally made at a temperature T;, higher than the operating temperature 7 (T < Tp,). Prior to
bonding at Tj,, both bodies are assumed to be stress-free and the surface parts at which the bodies will be
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joint inter- crack
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traction t,

Fig. 1. Bimaterial joint under operating conditions.
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joined are plane. After manufacturing the joint the whole system is cooled down to its operating tem-
perature 7. Often joints are made by brazing or solid state bonding in which a thin interlayer (a third
material) has been used. Generally the interlayer material is rather ductile because one wants to prevent the
build-up of residual stresses through plastic flow of the interlayer material. Mechanically this means that
thermal residual stresses only build up below a certain temperature. Typically one would expect this
temperature to be approximately equal to the recrystallisation temperature of the interlayer material
(Klomp, 1993) because for many metals the stress needed to deform the material plastically is quite small
above the recrystallisation temperature. To mimick this behaviour for a bimaterial joint (no interlayer), we
assume that thermal residual stresses exist only for temperatures below some temperature 7;, and that
during cooling down to 7 no stress relief takes place. So, at T = T; the bodies are stress-free and this state is
used as a stress-free reference state. The joint can then be modelled by requiring that material points ad-
jacent to the interface occupy the same position for all temperatures 7 < T;.

After producing the joint (joining and cooling) several other processes may follow (for example surface
grinding). Because the focus is here on thermal residual stresses we assume that these processes do not lead
to other residual stress systems. This means that bodies of the same shape and material, not bonded to-
gether but otherwise subjected to the same thermal and processing history, remain stress-free; in the absence
of bonding, stress-free states exist in each of the bodies for all T < T;.

The load is applied at the operating temperature 7 and this temperature is assumed to be constant
afterwards.

2.3. Thermo-mechanical modelling

2.3.1. General part

We consider only slow processes and situations with no body forces or heat sources and a uniform
temperature distribution at any time (no inertia effects, decoupled thermo-mechanical equations). As
variables we use the strains and the temperature so that, as is custom in thermodynamics, the Helmholtz
energy is the thermodynamic potential to be used in the analysis.

To study the interaction between loading mechanism and joint the bimaterial body and the loading
mechanism are considered as one single, mechanically isolated system. Exchange of thermal energy with its
environment, a heat bath with temperature 73 = 7, is possible. At equilibrium the Helmholtz energy H of
the system is minimal if the temperature of the system is equal to that of the heat bath 7 = T (Ericksen,
1991). The Helmholtz energy of the total system is

H = H, + Hy + H, (1)

with H, the contribution of the surfaces and the interface, H, that of the bulk and H; the contribution of the
loading mechanism.

2.3.2. Joint constraint and decomposition of the displacement

Mechanically, the joint is a kinematical constraint on the total displacement u of the material points
adjacent to the interface from their reference position x at 7;. The total displacement u — with respect to its
stress-free reference position x at the reference temperature 7; — is written as the sum of three independent
contributions

u=r+v-+w (2)

The first, r, is due to cooling of non-joined and non-loaded bodies from the reference temperature 7 to the
current temperature 7. The second, v, is caused by enforcement of the joint constraint at the current
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Fig. 2. Normals on the bodies and the interface.

temperature (but prior to load application) and the third, w, is caused purely by application of the traction
to the cooled and joined bodies. The joint constraint is

[u(x,T)] = lélig(u(x +&m-T)—ux—-—E&m, 7)) =0, xeTl (3)

with m the interface normal (Fig. 2). Using the decomposition (2), this constraint is found to split in two
independent constraints

r+v]=0 and [w]=0, xeT. (4)

2.3.3. Surfaces and the interface
The contribution of the surfaces and the interface is

— " 3 _ )7, XE B, )
H _/Sy(x)dS+/r/12dS with y(x) = {“/z, X € B (5)
The Helmholtz surface energy of the non-bonded surface regions is y and the interfacial Helmholtz energy
is 7;,. Although the surface and interface energy generally depends on the deformation (Gurtin and
Murdoch, 1975; Zangwill, 1990), we neglect this dependency.

2.3.4. Bulk of the material

The material behaviour of each material is assumed to be linear elastic and homogeneous (Erdogan,
1975) and we consider the small displacement gradient approximation.

Let € = (Vu+ (Vu)')/2 be the strain tensor and = T — T; the temperature difference. The expression
for Hy is found by considering the Helmholtz volume energy density as a quadratic function of € and 0 and
using that for 0 = 0 and e = 0 the materials are in a stress-free state (Landau and Lifshitz, 1986). The bulk
Helmholtz energy is then found to be a functional of u and a function of 0

o) = )+ [ (00) = OM s e(@)dV. (= elu)s L w) (6)
with Hér) a temperature, volume and material dependent reference value and  the strain energy density. L
is the fourth-order tensor of elastic constants with the usual symmetry properties (Malvern, 1969) and M
the symmetric second-order stress—temperature tensor. For further use we also need the (symmetric) tensor
of thermal expansion coefficients a defined by o = L' : M. All these tensors depend on the position but are
piecewise constant, i.e.

4 A jump of some quantity ¢ across the interface is indicated by square brackets, i.e. [c] = ¢; — ¢, and the average of these values by
a tilde ¢ = (c1 +¢2)/2.



5824 P.G.Th. van der Varst, G. de With | International Journal of Solids and Structures 38 (2001) 5819-5831

material
1L ———point x

€
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2.3.5. The loading mechanism

To study the interaction it is necessary to model the loading mechanism in more detail. Consider first a
simple loading mechanism (Fig. 3) where the load is applied by the mass Am attached to the body (at the
surface material point x) by means of an inextensible massless and ideally flexible string of length L
running over a massless pulley positioned at the point p. The current position of the attachment point x is k.
The pulley diameter is very small compared to /; = ||p — k||. The direction of the load is (p — x)//, and —
assuming that the load is distributed over the surface element AS — the magnitude is wAS with
o = gAm/AS (g constant of gravity) leading to the traction t = w(p — k)//s. Let h be the current position of
the mass Am, i.e. h=p — (L; — /;)e;, and the Helmholtz energy (potential energy) H,, = gh-e; Am; an
expression that can be rewritten as

Hy = o(p- e — (L — [[p — ]) AS. 8)

This simple model is in fact a special version of a class of a continuously distributed dead weight loading
systems characterised by the potential energy

Hpw = /S o(x)(es - p(x) — (Ls(x) — [[p(x) — x(x)[]))dS, )

where x labels the points of the surface region S, k(x) is the current position of these points and w, L, and p
are given functions of x.

To simplify the model and apply it to the present case, Hy, is expanded in a Taylor series around a base
line function ko(x) = x and truncated after the linear term. So the Helmholtz energy H; is

Hi (k) = Hpn(X) — /s t-(xk—x)dS (10)

with t(x) = o(x)(p(x) — Ko (X))/|Ip(x) — ko (X)|| the traction. Without a loss in generality, the base line
function K, is chosen as ko(x) = x (x € ;). Writing k(x) = k;(x) + w(x), where the function k, will be
specified later, the Helmholtz energy of the loading mechanism is

e — Hf(r) before load application, (11)
' Hfm + Hy(w) after load application

with Hf(r) and Hy defined by



P.G.Th. van der Varst, G. de With | International Journal of Solids and Structures 38 (2001) 5819-5831 5825

1O =t~ [ xS, ) = - [ twds (12

St

2.3.6. The basic equations

The decomposition of the total displacements was made for analytical purposes. However, each con-
tribution corresponds in fact to a possible physical process. The result of Ericksen as given previously then
implies that r, v and w can be found from a variational principle (see also Washizu (1983)) whereby the
Helmbholtz energy, relevant to the considered case, is to be minimised. As the case may be, minimisation is
constrained to ensure that the bodies remain connected.

The first contribution, r, is found by unconstrained minimisation of the Helmholtz energy Hy(r) of the
bulk because at this stage the loading mechanism is not yet coupled to the joint. This leads to L : €(r) = 6M
with solution (Carlson, 1984)

r(x) = fa(x)(x — xp) + a(x). (13)

Here, x and a(x) are arbitrary constant vectors and strainless rigid body displacements, respectively, that
both may exhibit jumps across the interface.

Using the solution (13) for r, the second contribution, v, is found by constrained (see the first of Eq. (4))
minimisation of Hy(r + v). The constraint induces an internal or residual stress 6, and

6. =L:e(v), dive, =0, x€B, (14)
6.-n=0 xeS=5US, (15)
[v] = —[r], [6.-m =0, xelr. (16)
The bulk energy now splits in two terms Hy(r + v) = Hy(r) + Hup(v) with
1
Hy(r) = Hér) - 502/(01 (L:a)dV, Han(v) = [ y(v)dr. (17)
B B

Obviously, Hy, is the elastic self-energy or strain energy associated with the combination of thermal mis-
match and joint constraint.

Finally, the third contribution, w, is determined by constrained (see the second of Eq. (4)) minimisation
of the Helmholtz energy Hy(r + v+ w) + Hr(k,,w) of bodies and loading mechanism considered as one
single system. Just prior to load application the points of S, occupy the position x +r + v and load ap-
plication adds w. Coupling of the loading mechanism must be performed without doing work. > So, the
reference function k; is chosen as k, = X +r + v and this leads to

Hy = Hi (X) 4+ Hy(r +v) + Hy(w). (18)

Note that the Hj;(w) is the classic potential energy associated with the traction system. The load induces a
stress o7 and

or =1L :e(w), divey =0, x € B, (19)
o-n=0, x€S§, (20)
or-n=t, Xc€S, (21)
[w] =0, [6p-m] =0, xel. (22)

> In terms of the simple model from Section 2.3.5 this means that the mass must be positioned in such a way that after cooling and
joining the string can be attached without slack or additional lifting of the mass so that load application occurs by removing the
support of the mass.
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The total stress is 6 = 6. + of and the total Helmholtz energy of the bulk, Hy(u), is now found to consist
of three separate terms

Hy(w) = Hi(r) + Ho (V) + Ho(w),  with Hy — / (w)dv. (23)

H,, is the elastic self-energy or strain energy associated with the traction induced stress fields ;. Eq. (23)
contains no interaction elastic energy. The interaction elastic energy density e(w) : L : €(v) is not locally
zero but its integrated form vanishes on account of Colonnetti’s theorem.

3. Interaction with the loading mechanism

Collecting all previous results it found that the total Helmholtz energy of the system is
H = Hy + Hy(r) + Hun (V) + Ho (W) + Hi(W) + Hin (X) + Hi(r + v). (24)

All contributions are neatly separated with H; being the contribution of the interface and the surfaces,
Hy(r) the bulk energy of the unloaded and freely shrunk materials, Hy,(v) the elastic strain energy due to the
mismatch and the interface constraint, H,(w) the classic strain energy caused by the loading, Hj;(w) the
classic potential energy of the loading mechanism and, finally, the last two terms represent the reference
value6of the energy of the loading mechanism. Part of this energy is the interaction energy. To see this, note
that

Hi(r +v) = —/S(r+v)-tdS:—0/Ba:0'de, (25)
/Sf-tdS:H&: Bcde (fzg(al—&—az)-x:e&-x). (26)
Writing Hyi(r + v) as Hy(r + v — ) + H;(r) suggests that the part
HmZﬂiﬁ‘—&-V—f):—/St~(r+v—f)dS (27)
I‘Iinzl‘lli(r+v—f):—B/B(a—&):o'de (28)

of Hyi(r + v) is the interaction energy. H,, is not only proportional to the loading and to the temperature
difference 0 but it also vanishes if no mismatch is present, i.e. if &; = op. The remaining part of H;(r + v),
0a : [e;dV, does not vanish if the expansion properties are equal although it is proportional to loading and
temperature difference. This energy term is not associated with mismatch and it is, unlike Hj,, independent
of the crack length as can be seen from the left-hand side of Eq. (26).

It is instructive to consider Eq. (28) for the case of isotropic materials having equal elastic but different
expansion properties. One then obtains

Hiy = —30(00 — o) K(AV — AVA) (29)

with o; the expansion coefficients, K the bulk modulus and AV; the volume changes of the bodies purely
caused by the applied loading.

% The derivation is omitted for reasons of space but Eq. (25) can be derived using ot = €(r), Colonnetti’s theorem, the divergence
theorem, mechanical equilibrium, the continuity properties of r + v and o at the interface, the fact that S; is traction-free and that
t =or-non S;. Eq. (26) can be derived in a similar way.
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Fig. 4. Straight interface crack, uniform width W (a) and cylindrical region D (surface 0D, m outward normal to D) moving with crack
tip (b).

4. Energy release rate

To proceed consider a situation of a joint having a uniform width W and an interfacial crack of length /
with a straight front (Fig. 4a). The energy release rate G is
1 dH
G=———| =G+G Gue + Gin 30
W dl | +Gm + (30)
in which the subscript ttf indicates that during differentiation temperature and tractions are to be kept fixed.
G, is the contribution ’ of the surfaces and the interface, Gy, the contribution of the thermal residual stress
caused by the thermal mismatch, Gy, the classic mechanical part of the energy release rate and Gj, the
interaction term. Specifically

Gs = v +72), (31)
Gth = - W a / ‘// (32)
Gne = VlV al "ol / viw (33)
Gy, = . g-tds. (34)

For Gy, Gy, and Gy, crack tip integrals can be derived. One has to account, however, for the fact that
differentiation (to crack length) and integration over the volume B do not commute. The approach ® used in
crack tip analysis is to introduce first a small region D (0D is the surface of D and m the outward normal on
0D) moving with the crack tip, next to differentiate and afterwards to let this region shrink to zero (Fig. 4b).
This leads to

7 In materials science —G; is called the work of adhesion J,q.
8 For a clear exposition of this approach we refer to Gurtin (1979). For reasons of space only the result is given.
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1 ov

Gy = 7 /ct(z//(v)el -m+a~ 6. -m;)dS, (35)
1 ow

Ge = W /ct(t//(w)el -m+§~ 6 -m)dS, (36)
1 ov ow

GinfW/Ct(e(v).cfe1~m+a~cf'era-o-C-m)dS. (37)

The subscript ct indicates crack tip integration, i.e. fc ,=limé—0 faD s Expressions (35)—(37) become in
fact J-integrals if we assume — as is usually done for homogeneous bodies (Gurtin and Podio-Guidugli,
1996; Maugin, 1992; Nguyen, 1981) — that near the crack tip and for a crack progressing in the x-direction
—0v/0x and —0w/0x are the dominant terms of Ov/0/ and Ow/0/, respectively. In the limit of vanishing § it is
then allowed to replace in expressions (35)—(37) the operator 0/0/ by —0/0x thus leading to the familiar
formulae for the J-integral.

In the experimental situation proportional loading is often used, i.e.

t:fq7 W:fW(X, Z)a G_/’:f'&f(xa 1)7 (38)
with f the load factor. Also
v = 0¥(x, 1) + rigid body displacements independent of /. (39)

Next, define the mechanical, mismatch and interaction compliance functions Cp(/), Cin(1) and Ci,(1),
respectively, by

Coll) = [0)ar. Cal) = [ ui)ar. (40)
B B
Can(l) = /(a—&):é‘de. (41)
B
Using that at mechanical equilibrium 2H;(w) = fS[ t-wdS gives
o 1 deC 2 _ 1 dC[h vl o 1 dcm
=g ar " =t Smwa )

Now we have a global representation because the sum G, + Gy, + Gi, is a quadratic form in the global
parameters f and 0 and the coefficients of this quadratic form are proportional to the derivatives of the
compliance functions. Denoting the two eigenvalues of this form by w; and w, it is found that

dCpe dCy, dCi, \?
d/dl d/

-1
w2

d/ d/

W+ Wy = —

1 [dCye dCu
W{ . (43)

}7 W1y =

The magnitudes of the eigenvalues determine whether the sum Gy, + Gj, + Gy 1s positive definite or not.

5. Discussion

The part H;, of the total Helmholtz energy is indeed an interaction energy because Eq. (28) shows that
the absence of either a load, a temperature difference or a difference in thermal expansion properties of
the materials leads to H;, = 0. Egs. (27) and (28) for the interaction energy are equivalent, yet reflect
different points of view. Eq. (27) directs attention to the surfaces S; where the loading mechanism is
attached to the bodies, whereas Eq. (28) focuses on the volume. The former equation is therefore the key
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to the physical basis of the interaction energy, namely a part of the reference value for the energy of the
loading mechanism.

Eq. (28) for Hy, is similar to a result in the theory of point defects. For isotropic materials with ¥; and o;
the volumes and coefficients of linear expansion, respectively, p; the volume averaged hydrostatic pressure
induced by the applied traction, the interaction energy, Eq. (28), becomes

2

Hy, = 392(%‘ —a)Vip;. (44)

i=1

This result resembles the expression §Vp(&) for the energy associated with the interaction between a point
defect (located at x = & and leading to a global volume change 6/) and an external loading system locally
exerting the pressure p(x) (Eshelby, 1956).

The sum of Gy, Gy, and Gy, is a quadratic form, the sign of which is determined by the magnitudes of
the derivatives of the three compliance functions (cf. Eq. (43)). The sign of Gy, is positive because crack
growth leads to an increase in mechanical compliance, i.e. dCy./d/ > 0. For the v displacements crack
growth is equivalent to relaxing the interface constraint. Since the v displacements are determined by
constrained minimisation of a non-negative functional the actual value of Hy,, that is to say the value of
this functional attained at the minimum, decreases if the constraint is progressively relaxed and Hy,
reaches its absolute minimum value zero if / =L (no constraint at all). Therefore we conclude that
generally Gy, > 0 and from this that dCy,/d/ < 0. Combining Eq. (43) with the inequalities dCy,./d/ > 0
and dCy,/dl < 0 shows that w; + @, > 0. Consequently, at least one of the two eigenvalues is positive
because both are real. One then finds from the second of Eq. (43) that both eigenvalues are positive, i.e.
Gme + G + Gy > 0 whenever

dCin2 < dcme dCth
d/ d/ dr -

Note that it is not the sign of dCj,/d/ that is important but its magnitude. Considering that the stress
intensity factor for each fracture mode is proportional to ¢,f + ¢40 (¢, and ¢y dependent on the considered
mode) and that the usual energy release rate, that is to say Gy + Gy, + Giy, 1s proportional to the sum of the
squares of the stress intensity factors for the three modes (Nairn, 1997) one finds that Gy, + Gy, + Gy, is
always positive. So, the inequality (45) is always met.

The quadratic form for Gp + Gy, + Gi, does not tell us to which mode each term contributes. If one
knows in advance that all terms contribute to one single mode, say mode I, then Gy,., G, and Gj, are related
(Nairn, 1997). Vanishing Gj, combined with non-zero G, and Gy, indicates a situation where loading and
residual stress field operate on different modes. Consider for example a double cantilever beam specimen
where the two materials have the same shape and elastic properties but differ in thermal expansion coef-
ficient. Application of Eq. (29) and using symmetry arguments then shows that for this system A, = 0 (and
therefore also Gy, = 0) for mechanical mode 1 and mode III loading. Since the elastic energy due to the
mismatch Hy, is the same irrespective whether mechanical loading is mode I, II or III we conclude that in
this example Gy, contributes to mode II.

Energy terms depending on the temperature difference 0, the crack length / and the mismatch can be used
to determine how the entropy S = —0H /0T of the system (bodies plus loading mechanism) changes if crack
growth occurs.

@S_{WGGS/E}O, o = O,

ol o W@(Gs + G[h + Gin)/ag, o 7é o 58

(45)

(40)

A crack can be considered as a macroscopic defect and its size, the crack length /, is thermodynamically
an internal variable. The Helmholtz energy H of the system (surface, bulk and loading device) is a potential
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for the thermodynamic force ° F associated with /. Or, F = —0H /3] where all other macroscopic param-
eters (temperature and boundary conditions) have to be kept constant in the differentiation process. In our
case this leads to

F 1 dH
7= G= TR (47)

In mechanics one usually does not include the surface term Hj in the definition of G. If, however, one
wants to study combined mechanical and chemical phenomena this term is needed. Apart from this surface
influence on G, our energy release rate is the same as encountered in mechanics because the Helmholtz
energy H — H; is, not counting crack length independent terms, equal to the elastic potential.

Provided dissipation due to plastic and viscous effects can be neglected, the second law of thermody-
namics demands that Fd//d¢ > 0 or, considering that at the onset of crack growth d//d¢ > 0, that G > 0.
Rearranging the last inequality leads to a Griffith criterion

Gme + Gth +Gin = — Gs = Jad > O, (48)

where J,4 is the (positive) work of adhesion. Since this equation is derived from thermodynamics’ second
law (an inequality) it becomes clear why the Griffith criterion is basically one of necessity. Because Gy, = 0
we see that the mismatch stresses always tend to weaken a component. This effect may be mitigated or
enhanced by the interaction term because Gj, may be of either sign.

6. Conclusions

In this paper a traction loaded thermally mismatched bimaterial body was considered. Each material is
homogeneous and linear elastic but anisotropy is allowed. Expressions for the Helmholtz energy and the
energy release rate for a traction-free interface crack were derived.

The Helmholtz energy was found to contain a term H;, which is indeed an interaction energy because the
absence of either a load, a temperature difference or a difference in thermal expansion properties of the
materials renders this term zero. The origin of this energy is actually a correction of the reference value of
the energy of the loading mechanism one needs to include so as to account for the shape change the in-
terface constraint brings about to an otherwise unloaded body. When after load application the interface
crack starts to grow these displacements also change because interface crack growth is equivalent to re-
laxing the constraints for these displacements. The traction system obviously may perform work against
these displacement changes and this work is in addition to the work resulting from displacement changes
purely caused by the increase of structural compliance.

The sum of Gy, Gin and Gy, is for proportional loading a positive quadratic form in ¢ and the load
parameter f. This expression does not tell us to which fracture mode (I, II, IIT) each term contributes.
However, when material properties, loading and geometry combine in such a way that the interaction term
vanishes one can conclude that mechanical and mismatch stress fields operate on different modes. Alter-
natively, in case the interaction does not vanish the two stress fields operate on at least one common
fracture mode.

® For an extensive review of internal variable theory we refer to Maugin and Muschik (1994). For a treatment similar to ours, see
Rice (1978). In recent literature the thermodynamic force F is called configurational force (Gurtin and Podio-Guidugli, 1996) or
material force (Maugin, 1998).
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The mismatch stresses always tend to weaken a component because the corresponding energy release
rate is always positive. The presence of an interaction term, however, may enhance or mitigate this effect
because the energy release rate associated with it may be of either sign .

Finally, we want to point out that the procedure of the analysis remains the same if the crack is not along
the interface but away from it.

Appendix A. The theorem of Colonnetti

Let o be an internal stress field in a body B, i.e. a stress field for which dive = 0 in Band ¢ - n = 0 on the
surface S of B (no volume forces and boundary conditions). Now let u be an arbitrary displacement field (e
the strain associated with u) caused by applying boundary conditions. Starting from mechanical equilib-
rium (Einstein summation convention employed) o;;; =0 for the internal field, one finds u0;; =
(u,-a,j,-)ﬂj — ¢;0;; = 0. Integrating and applying the divergence theorem obtains

/e:GdV:/u-c-ndS:O. (A.1)
v s

So, the energy associated with the interaction between the internal stress field and that caused by arbitrary
boundary conditions is zero.
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